2025.10.31 | Emu3.5统一预测时空;扩散提示驱动机器人
Description
本期的 15 篇论文如下:
[00:26 ] 🌍 Emu3.5: Native Multimodal Models are World Learners(Emu3.5:原生多模态世界模型让AI看懂并预测未来)
[01:04 ] 🤖 Exploring Conditions for Diffusion models in Robotic Control(探索扩散模型在机器人控制中的条件化策略)
[01:42 ] 🎬 Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark(视频模型已准备好做零样本推理了吗?基于MME-CoF基准的实证研究)
[02:22 ] ⚡ Kimi Linear: An Expressive, Efficient Attention Architecture(Kimi线性:一种富有表现力的高效注意力架构)
[02:55 ] 🧮 AMO-Bench: Large Language Models Still Struggle in High School Math Competitions(AMO-Bench:大语言模型在高中数学奥赛级难题前仍举步维艰)
[03:35 ] 🕺 The Quest for Generalizable Motion Generation: Data, Model, and Evaluation(可泛化动作生成之路:数据、模型与评测)
[04:17 ] 🌐 Surfer 2: The Next Generation of Cross-Platform Computer Use Agents(Surfer 2:下一代跨平台计算机使用智能体)
[04:42 ] 🌍 OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes(OmniX:从统一全景生成与感知到可渲染3D场景)
[05:21 ] 🤝 The Era of Agentic Organization: Learning to Organize with Language Models(智能体组织时代:用语言模型学会协同)
[05:57 ] 🧠 Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning(监督式强化学习:从专家轨迹到逐步推理)
[06:32 ] 🕹 Can Agent Conquer Web? Exploring the Frontiers of ChatGPT Atlas Agent in Web Games(智能体能征服网络吗?探索 ChatGPT Atlas 在网络游戏中的能力边界)
[07:10 ] 🏥 EHR-R1: A Reasoning-Enhanced Foundational Language Model for Electronic Health Record Analysis(EHR-R1:面向电子健康记录分析的推理增强型基础语言模型)
[07:55 ] 📄 OmniLayout: Enabling Coarse-to-Fine Learning with LLMs for Universal Document Layout Generation(OmniLayout:基于LLM的粗到细通用文档版面生成)
[08:38 ] 🎯 MIRO: MultI-Reward cOnditioned pretraining improves T2I quality and efficiency(MIRO:多奖励条件预训练提升文本到图像生成质量与效率)
[09:09 ] 🤖 Magentic Marketplace: An Open-Source Environment for Studying Agentic Markets(Magentic市集:一个用于研究智能代理市场的开源环境)
<figure>
</figure>【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递







